Contents

Load a test map to use as an example

ns=load(which('neurosynth_data_obj.mat'));test_map=get_wh_image(ns.topic_obj_reverseinference,1);% somatosensory topic

Run annotations

annotate_binary_results_map(test_map)
Transmodal vs. unimodal:  Principal gradient of functional connectivity
Allen brain project transcriptomic gradients
Neuromaps PET neurochemical tracer maps
 	Name	Pearson's r	
5HT1a	0.0229	
5HT1a	0.0319	
5HT1b	0.0451	
5HT1b	0.0831	
5HT1b	0.0451	
5HT2a	0.0330	
5HT2a	0.0326	
5HT2a	0.0245	
5HT4	0.0056	
5HT6	0.0566	
5HTT	-0.0327	
5HTT	-0.0054	
a4b2	-0.0081	
CB1	0.1152	
CB1	0.0581	
D1	-0.0247	
D2	-0.0069	
D2	-0.0012	
D2	-0.0077	
D2	0.0165	
DAT	-0.0038	
DAT	-0.0621	
GABAa	0.0610	
GABAabz	0.0736	
H3	0.0245	
M1	0.0879	
mGluR5	0.0777	
mGluR5	0.0906	
mGluR5	0.1215	
MOR	-0.0416	
MOR	0.0048	
NET	0.0835	
NET	0.1811	
VAChT	0.0143	
VAChT	-0.0073	
VAChT	0.0200	
Neurosynth topic and term maps
Neurosynth topics - forward inference maps
Test image 1
..cs\v4-topics-100_0_stimulation_somatosensory_tms_pFgA_z_FDR_0.01.nii
_____________________________________________________________________
    r_lowest         Term_or_Topic_lowest         r_highest        Term_or_Topic_highest    
    _________    _____________________________    _________    _____________________________

    -0.072766    {'Word Processing'          }      0.60286    {'Sensory Stimulation'      }
    -0.063182    {'Emotion face'             }       0.2544    {'Pain Perception'          }
    -0.062233    {'Familiarity & recognition'}       0.2481    {'Motor movements'          }
    -0.059672    {'Depression & Disorders'   }      0.24004    {'Motor control'            }
    -0.058889    {'Language comprehension'   }      0.07949    {'Motor Coordination'       }
    -0.057834    {'Reading & Writing'        }      0.07842    {'Creativity & Acupuncture '}
    -0.056539    {'Cognitive Conflict'       }     0.077318    {'Action Observation'       }
    -0.054691    {'Memory & Events'          }     0.038981    {'Auditory processing'      }
    -0.054037    {'Task-switching'           }    0.0095692    {'Multiple Sclerosis'       }
    -0.053809    {'Encoding & Retrieval'     }     0.008167    {'Body perception'          }

Neurosynth topics - reverse inference maps
Test image 1
..cs\v4-topics-100_0_stimulation_somatosensory_tms_pFgA_z_FDR_0.01.nii
_____________________________________________________________________
    r_lowest        Term_or_Topic_lowest        r_highest         Term_or_Topic_highest    
    _________    __________________________    ___________    _____________________________

    -0.051458    {'Reading & Writing'     }              1    {'Sensory Stimulation'      }
     -0.05124    {'Emotion face'          }        0.32365    {'Pain Perception'          }
    -0.049365    {'Encoding & Retrieval'  }        0.31546    {'Motor movements'          }
      -0.0483    {'Memory & Events'       }        0.23224    {'Motor control'            }
    -0.046738    {'Working Memory'        }       0.088103    {'Action Observation'       }
    -0.044211    {'Word Processing'       }        0.04632    {'Motor Coordination'       }
     -0.04161    {'Language comprehension'}       0.041099    {'Creativity & Acupuncture '}
    -0.040511    {'Empathy & Interaction' }       0.027829    {'Auditory processing'      }
     -0.03783    {'Emotion Processing'    }       0.016815    {'Food & weight'            }
    -0.031803    {'Spatial Attention'     }    -0.00078825    {'Multiple Sclerosis'       }

Neurosynth terms- reverse inference maps
Test image 1
..cs\v4-topics-100_0_stimulation_somatosensory_tms_pFgA_z_FDR_0.01.nii
_____________________________________________________________________
    r_lowest    Term_or_Topic_lowest    r_highest    Term_or_Topic_highest
    ________    ____________________    _________    _____________________

     -0.2424       {'memory'   }         0.47282       {'somatosensory'}  
    -0.18946       {'retrieval'}         0.45236       {'tactile'      }  
    -0.18554       {'correct'  }         0.42208       {'stimulation'  }  
    -0.18174       {'number'   }         0.35855       {'hand'         }  
    -0.17871       {'word'     }         0.32351       {'finger'       }  
    -0.17504       {'work'     }         0.31912       {'muscle'       }  
    -0.16633       {'verbal'   }         0.31753       {'pain'         }  
    -0.16625       {'face'     }         0.31062       {'sensory'      }  
    -0.16585       {'words'    }         0.30502       {'painful'      }  
    -0.16482       {'encoding' }         0.30338       {'sensorimotor' }  

Correlations with Yeo/Bucker resting-state networks
Loaded images:
/Users/f003vz1/Documents/GitHub/CanlabCore/CanlabCore/canlab_canonical_brains/Combined_multiatlas_ROI_masks/rBucknerlab_7clusters_SPMAnat_Other_combined.img

 	Name	Pearson's r	
Visual	-0.0541	
Somatomotor	0.2994	
dAttention	-0.0167	
vAttention	0.0807	
Limbic	-0.0438	
Frontoparietal	-0.0638	
Default	-0.0744	
Prepping atlases: 
yeo17networks Loading atlas: /Users/f003vz1/Documents/GitHub/Neuroimaging_Pattern_Masks/Atlases_and_parcellations/2018_Schaefer_Yeo_multires_cortical_parcellation/Schaefer2018Cortex_17networks_atlas_object.mat
Note: Mean weights reflect homogeneity in sign and magnitude across region,
not high spatial frequency/pattern information.

____________________________________________________________________________________________________________________________________________
Wedge plot:
Wedge plots depict mean images values across voxels. Red indicates positive values and blue negative values. If multiple images were 
entered, the darker shaded area indicates the standard error of the mean (SEM) across individuals.                                   
____________________________________________________________________________________________________________________________________________