Contents
Dependencies:
test_dat = load_image_set('emotionreg', 'noverbose');
image_obj = mean(test_dat);
Run neurosynth similarity
[image_by_feature_correlations, top_feature_tables] = neurosynth_feature_labels( image_obj, 'images_are_replicates', false, 'noverbose');
Input image 1
fullpath_was_empty
_____________________________________________________________________
testr_low words_low testr_high words_high
_________ _______________ __________ ____________
-0.23326 'stimulation' 0.2495 'monitoring'
-0.19523 'frequency' 0.24703 'control'
-0.17128 'noise' 0.24036 'memory'
-0.16888 'male' 0.23539 'working'
-0.15396 'adaptation' 0.22153 'demand'
-0.15345 'female' 0.22031 'demands'
-0.15209 'somatosensory' 0.21877 'executive'
-0.15023 'images' 0.21601 'correct'
-0.14991 'animal' 0.21213 'knowledge'
-0.13918 'sensory' 0.19795 'conflict'
Aggregate results for plot
lowwords = [top_feature_tables{1}.words_low(:)]';
disp(lowwords)
highwords = [top_feature_tables{1}.words_high(:)]';
disp(highwords)
r_low = top_feature_tables{1}.testr_low;
r_high = top_feature_tables{1}.testr_high;
r_to_plot = [r_high; r_low];
textlabels = [ highwords lowwords];
Columns 1 through 5
'stimulation' 'frequency' 'noise' 'male' 'adaptation'
Columns 6 through 10
'female' 'somatosensory' 'images' 'animal' 'sensory'
Columns 1 through 6
'monitoring' 'control' 'memory' 'working' 'demand' 'demands'
Columns 7 through 10
'executive' 'correct' 'knowledge' 'conflict'
create_figure('wedge_plot');
hh = tor_wedge_plot(r_to_plot, textlabels, 'outer_circle_radius', .3, 'colors', {[1 .7 0] [.4 0 .8]}, 'bicolor', 'nofigure');